k0be是什么意思,k0在英语中的意思

  • 单词什么意思
  • 2024-06-15

k0be是什么意思?k0be是一个特定的名字,在某些领域中常常被用来指代那些具有突出天赋和实力的人。这个名字的灵感来源于前NBA球员科比·布莱恩特,他是历史上最伟大的篮球运动员之一。科比以他的超凡的天赋和勤奋的工作态度为人们所熟知,他这一人物形象已经成为了一个代名词,吸引着许多向往成功的年轻人效仿和追逐。那么,k0be是什么意思?一起来了解一下吧。

beko冰箱使用说明书

相对论分狭义相对论和广义相对论。

本科时学过的,现在就引用当时的话来概括一下内容。

狭义相对论:所有物理规律对于一切惯性参照系都具有相同的表现形式。

广义相对论:所有物理规律对于一切参照系(包括非惯性参照系)都具有相同的表现形式。

狭义相对论的两条公设:

a),光速不变原理:光速在一切惯性参照系中保持不变;

b),相对性原理:对于一切惯性系,运用该参照系的空间和时间所表达的物理规律,它们的形式都是相同的;

狭义相对论的所有定理、推论以及一切理论都是在这两个简化得不能再简化的公设的基础上推导出来的。

广义相对论扩大了狭义相对论的考察范围,把参照系从惯性参照系发展到非惯性参照系。其中,用到了一个很核心的公设,那就是等效原理。等效原理的大意是这样的:由引力场造成的参照系与加速度的运动造成的参照系是等效的。从这个原理出发可直接推导出引力场附近的空间是“弯曲”的,它从根本上解决了一个难题,即光经过引力场时表现出了“弯曲”的现象。然而光线总是走直线的,不会弯曲的,真正弯曲的是空间,因为空间弯曲了,所以光线经过引力场时表现出弯曲,实际上,光仍然走直线,不会弯曲的。这也解决了水星今日点的进动剩余难题。

如果还想了解更多,需要学习更专业的物理书籍。

字母k0到k9都是代表什么啊

k0be是一个特定的名字,在某些领域中常常被用来指代那些具有突出天赋和实力的人。这个名字的灵感来源于前NBA球员科比·布莱恩特,他是历史上最伟大的篮球运动员之一。科比以他的超凡的天赋和勤奋的工作态度为人们所熟知,他这一人物形象已经成为了一个代名词,吸引着许多向往成功的年轻人效仿和追逐。

k0be在网络用语中的含义

在网络用语中,k0be有许多不同的含义。它可以被用作一个代称,来指代那些拥有出色表现和极高能力的人。或者是指代那些球迷们对科比的热爱和怀念。在数字游戏中,k0be也是一个常用的虚拟人物的名字,代表着那些性能强大的游戏玩家。不论是在现实社会还是虚拟社交圈中,k0be都是一个充满神秘和力量的名字,每个人都会根据自己的理解并赋予它不同的涵义。

k0be除了是一个普通的名字,它同时也代表着一种精神和态度。科比·布莱恩特在他职业生涯中的无数表现,向人们证明了天赋加勤奋才能创造良好的成就。正因为如此,k0be精神也被视为勇敢和坚定的代名词。它指代着那些在困境中仍然无所畏惧地坚持追求自己理想的人。当我们谈到k0be精神时,我们在谈论的不仅仅是一个名字,更是一种力量,一种勇气,一种精神的展示。

k0在英语中的意思

首先插上电源插头,放下或接好排水管,打开水龙头,把要洗涤的衣物和洗衣粉及添加剂(软化剂、漂白剂等)放入洗衣机内,并将机盖关上;其次按下电源开关,根据所洗涤衣物的多少选择好水位,并根据洗涤衣物的肮脏程度和质料等具体情况选择好洗涤程序;接着按下“起动/暂停”按钮,洗衣机开始工作;所选择的程序工作结束后,蜂鸣器会发出蜂鸣声;最后工作结束后,关上电源开关,并将电源插头从插座上拔出,把水龙头关上,然后打开机盖,取出洗涤衣物,把线屑过滤网袋清理干净,并将洗衣机擦干。

滚筒洗衣机怎么用—注意事项

注意,当选择“洗涤”或“漂洗”程序时,水位不到设置值,波轮是不会运转的;在脱水程序时,必须将机盖关上,并且不宜时常打开盖;绝不可用手接触洗涤脱水桶,以免将手卷入,发生危险;也不可洗涤或脱水含有挥发性物质(溶剂、酒精等)的衣物,以免发生事故;在脱水不平衡时,洗衣机能够进行脱水不平衡修正,若修正2次后还没解决不平衡问题时,将会停机并报警,此时,应打开机盖,把偏挤在一边的衣物放均匀,再关上机盖,按“起动/暂停”按钮即可;采用热水洗时,不能使用50℃以上的热水,并且注意,不能使水溅湿控制板,以免内部的电气件由于沾水而造成烧毁;洗涤前,应检查洗涤衣物中是否存有火柴棒、发夹或硬币等杂物,若有,应全部取出;当气温很低时,洗衣机容易产生冻结,此时,应用50℃以下的温水倒人浸泡一段时间,等解冻后再使用;在水温较低时,洗衣粉不易溶解,此时,需用少量温水(30℃左右)溶解后再倒入洗衣机使用。

beok在爱情中的意义

Kobe

1.荷兰语男子名,Jakob的昵称,词源为希伯来语人名 יַעֲקֹב ,含义为“取代者”。一说词源为希伯来语 יַעֲקֹבְאֵל,含义为“愿上帝护佑”。

2.美国篮球运动员Kobe Bryant的名字,来源于日本城市神户的罗马音Kōbe。他的父母在一份日本菜单上看到了这个词,于是给他起了这个名字,并且铵英语发音习惯把它读成['kəubi ],实际上日语罗马音中e表示的发音应该是接近/ε/的。

K0BE是什么国家

ON THE ELECTRODYNAMICS OF MOVING

BODIES

By A. EINSTEIN

June 30, 1905

It is known that Maxwell’s electrodynamics—as usually understood at the

present time—when applied to moving bodies, leads to asymmetries which do

not appear to be inherent in the phenomena. Take, for example, the reciprocal

electrodynamic action of a magnet and a conductor. The observable phenomenon

here depends only on the relative motion of the conductor and the

magnet, whereas the customary view draws a sharp distinction between the two

cases in which either the one or the other of these bodies is in motion. For if the

magnet is in motion and the conductor at rest, there arises in the neighbourhood

of the magnet an electric field with a certain definite energy, producing

a current at the places where parts of the conductor are situated. But if the

magnet is stationary and the conductor in motion, no electric field arises in the

neighbourhood of the magnet. In the conductor, however, we find an electromotive

force, to which in itself there is no corresponding energy, but which gives

rise—assuming equality of relative motion in the two cases discussed—to electric

currents of the same path and intensity as those produced by the electric

forces in the former case.

Examples of this sort, together with the unsuccessful attempts to discover

any motion of the earth relatively to the “light medium,” suggest that the

phenomena of electrodynamics as well as of mechanics possess no properties

corresponding to the idea of absolute rest. They suggest rather that, as has

already been shown to the first order of small quantities, the same laws of

electrodynamics and optics will be valid for all frames of reference for which the

equations of mechanics hold good.1 We will raise this conjecture (the purport

of which will hereafter be called the “Principle of Relativity”) to the status

of a postulate, and also introduce another postulate, which is only apparently

irreconcilable with the former, namely, that light is always propagated in empty

space with a definite velocity c which is independent of the state of motion of the

emitting body. These two postulates suce for the attainment of a simple and

consistent theory of the electrodynamics of moving bodies based on Maxwell’s

theory for stationary bodies. The introduction of a “luminiferous ether” will

prove to be superfluous inasmuch as the view here to be developed will not

require an “absolutely stationary space” provided with special properties, nor

1The preceding memoir by Lorentz was not at this time known to the author.

1

assign a velocity-vector to a point of the empty space in which electromagnetic

processes take place.

The theory to be developed is based—like all electrodynamics—on the kinematics

of the rigid body, since the assertions of any such theory have to do

with the relationships between rigid bodies (systems of co-ordinates), clocks,

and electromagnetic processes. Insucient consideration of this circumstance

lies at the root of the diculties which the electrodynamics of moving bodies

at present encounters.

I. KINEMATICAL PART

§ 1. Definition of Simultaneity

Let us take a system of co-ordinates in which the equations of Newtonian

mechanics hold good.2 In order to render our presentation more precise and

to distinguish this system of co-ordinates verbally from others which will be

introduced hereafter, we call it the “stationary system.”

If a material point is at rest relatively to this system of co-ordinates, its

position can be defined relatively thereto by the employment of rigid standards

of measurement and the methods of Euclidean geometry, and can be expressed

in Cartesian co-ordinates.

If we wish to describe the motion of a material point, we give the values of

its co-ordinates as functions of the time. Now we must bear carefully in mind

that a mathematical description of this kind has no physical meaning unless

we are quite clear as to what we understand by “time.” We have to take into

account that all our judgments in which time plays a part are always judgments

of simultaneous events. If, for instance, I say, “That train arrives here at 7

o’clock,” I mean something like this: “The pointing of the small hand of my

watch to 7 and the arrival of the train are simultaneous events.”3

It might appear possible to overcome all the diculties attending the definition

of “time” by substituting “the position of the small hand of my watch” for

“time.” And in fact such a definition is satisfactory when we are concerned with

defining a time exclusively for the place where the watch is located; but it is no

longer satisfactory when we have to connect in time series of events occurring

at di erent places, or—what comes to the same thing—to evaluate the times of

events occurring at places remote from the watch.

We might, of course, content ourselves with time values determined by an

observer stationed together with the watch at the origin of the co-ordinates,

and co-ordinating the corresponding positions of the hands with light signals,

given out by every event to be timed, and reaching him through empty space.

But this co-ordination has the disadvantage that it is not independent of the

standpoint of the observer with the watch or clock, as we know from experience.

2i.e. to the first approximation.

3We shall not here discuss the inexactitude which lurks in the concept of simultaneity of

two events at approximately the same place, which can only be removed by an abstraction.

2

We arrive at a much more practical determination along the following line of

thought.

If at the point A of space there is a clock, an observer at A can determine the

time values of events in the immediate proximity of A by finding the positions

of the hands which are simultaneous with these events. If there is at the point B

of space another clock in all respects resembling the one at A, it is possible for

an observer at B to determine the time values of events in the immediate neighbourhood

of B. But it is not possible without further assumption to compare,

in respect of time, an event at A with an event at B. We have so far defined

only an “A time” and a “B time.” We have not defined a common “time” for

A and B, for the latter cannot be defined at all unless we establish by definition

that the “time” required by light to travel from A to B equals the “time” it

requires to travel from B to A. Let a ray of light start at the “A time” tA from

A towards B, let it at the “B time” tB be reflected at B in the direction of A,

and arrive again at A at the “A time” t0A.

In accordance with definition the two clocks synchronize if

tB − tA = t0A − tB.

We assume that this definition of synchronism is free from contradictions,

and possible for any number of points; and that the following relations are

universally valid:—

1. If the clock at B synchronizes with the clock at A, the clock at A synchronizes

with the clock at B.

2. If the clock at A synchronizes with the clock at B and also with the clock

at C, the clocks at B and C also synchronize with each other.

Thus with the help of certain imaginary physical experiments we have settled

what is to be understood by synchronous stationary clocks located at different

places, and have evidently obtained a definition of “simultaneous,” or

“synchronous,” and of “time.” The “time” of an event is that which is given

simultaneously with the event by a stationary clock located at the place of

the event, this clock being synchronous, and indeed synchronous for all time

determinations, with a specified stationary clock.

In agreement with experience we further assume the quantity

2AB

t0A − tA

= c,

to be a universal constant—the velocity of light in empty space.

It is essential to have time defined by means of stationary clocks in the

stationary system, and the time now defined being appropriate to the stationary

system we call it “the time of the stationary system.”

§ 2. On the Relativity of Lengths and Times

The following reflexions are based on the principle of relativity and on the

principle of the constancy of the velocity of light. These two principles we define

as follows:—

3

1. The laws by which the states of physical systems undergo change are not

a ected, whether these changes of state be referred to the one or the other of

two systems of co-ordinates in uniform translatory motion.

2. Any ray of light moves in the “stationary” system of co-ordinates with

the determined velocity c, whether the ray be emitted by a stationary or by a

moving body. Hence

velocity =

light path

time interval

where time interval is to be taken in the sense of the definition in § 1.

Let there be given a stationary rigid rod; and let its length be l as measured

by a measuring-rod which is also stationary. We now imagine the axis of the

rod lying along the axis of x of the stationary system of co-ordinates, and that

a uniform motion of parallel translation with velocity v along the axis of x in

the direction of increasing x is then imparted to the rod. We now inquire as to

the length of the moving rod, and imagine its length to be ascertained by the

following two operations:—

(a) The observer moves together with the given measuring-rod and the rod

to be measured, and measures the length of the rod directly by superposing the

measuring-rod, in just the same way as if all three were at rest.

(b) By means of stationary clocks set up in the stationary system and synchronizing

in accordance with § 1, the observer ascertains at what points of the

stationary system the two ends of the rod to be measured are located at a definite

time. The distance between these two points, measured by the measuring-rod

already employed, which in this case is at rest, is also a length which may be

designated “the length of the rod.”

In accordance with the principle of relativity the length to be discovered by

the operation (a)—we will call it “the length of the rod in the moving system”—

must be equal to the length l of the stationary rod.

The length to be discovered by the operation (b) we will call “the length

of the (moving) rod in the stationary system.” This we shall determine on the

basis of our two principles, and we shall find that it di ers from l.

Current kinematics tacitly assumes that the lengths determined by these two

operations are precisely equal, or in other words, that a moving rigid body at

the epoch t may in geometrical respects be perfectly represented by the same

body at rest in a definite position.

We imagine further that at the two ends A and B of the rod, clocks are

placed which synchronize with the clocks of the stationary system, that is to say

that their indications correspond at any instant to the “time of the stationary

system” at the places where they happen to be. These clocks are therefore

“synchronous in the stationary system.”

We imagine further that with each clock there is a moving observer, and

that these observers apply to both clocks the criterion established in § 1 for the

synchronization of two clocks. Let a ray of light depart from A at the time4 tA,

4“Time” here denotes “time of the stationary system” and also “position of hands of the

moving clock situated at the place under discussion.”

4

let it be reflected at B at the time tB, and reach A again at the time t0A. Taking

into consideration the principle of the constancy of the velocity of light we find

that

tB − tA = rAB

c − v

and t0A − tB = rAB

c + v

where rAB denotes the length of the moving rod—measured in the stationary

system. Observers moving with the moving rod would thus find that the two

clocks were not synchronous, while observers in the stationary system would

declare the clocks to be synchronous.

So we see that we cannot attach any absolute signification to the concept of

simultaneity, but that two events which, viewed from a system of co-ordinates,

are simultaneous, can no longer be looked upon as simultaneous events when

envisaged from a system which is in motion relatively to that system.

§ 3. Theory of the Transformation of Co-ordinates and

Times from a Stationary System to another System in

Uniform Motion of Translation Relatively to the Former

Let us in “stationary” space take two systems of co-ordinates, i.e. two systems,

each of three rigid material lines, perpendicular to one another, and issuing

from a point. Let the axes of X of the two systems coincide, and their axes of

Y and Z respectively be parallel. Let each system be provided with a rigid

measuring-rod and a number of clocks, and let the two measuring-rods, and

likewise all the clocks of the two systems, be in all respects alike.

Now to the origin of one of the two systems (k) let a constant velocity v

be imparted in the direction of the increasing x of the other stationary system

(K), and let this velocity be communicated to the axes of the co-ordinates, the

relevant measuring-rod, and the clocks. To any time of the stationary system K

there then will correspond a definite position of the axes of the moving system,

and from reasons of symmetry we are entitled to assume that the motion of k

may be such that the axes of the moving system are at the time t (this “t” always

denotes a time of the stationary system) parallel to the axes of the stationary

system.

We now imagine space to be measured from the stationary system K by

means of the stationary measuring-rod, and also from the moving system k

by means of the measuring-rod moving with it; and that we thus obtain the

co-ordinates x, y, z, and , ,  respectively. Further, let the time t of the

stationary system be determined for all points thereof at which there are clocks

by means of light signals in the manner indicated in § 1; similarly let the time

 of the moving system be determined for all points of the moving system at

which there are clocks at rest relatively to that system by applying the method,

given in § 1, of light signals between the points at which the latter clocks are

located.

To any system of values x, y, z, t, which completely defines the place and

time of an event in the stationary system, there belongs a system of values ,

5

, ,  , determining that event relatively to the system k, and our task is now

to find the system of equations connecting these quantities.

In the first place it is clear that the equations must be linear on account of

the properties of homogeneity which we attribute to space and time.

If we place x0 = x − vt, it is clear that a point at rest in the system k must

have a system of values x0, y, z, independent of time. We first define  as a

function of x0, y, z, and t. To do this we have to express in equations that  is

nothing else than the summary of the data of clocks at rest in system k, which

have been synchronized according to the rule given in § 1.

From the origin of system k let a ray be emitted at the time 0 along the

X-axis to x0, and at the time 1 be reflected thence to the origin of the coordinates,

arriving there at the time 2; we then must have 1

2 (0 + 2) = 1, or,

by inserting the arguments of the function  and applying the principle of the

constancy of the velocity of light in the stationary system:—

1

2  (0, 0, 0, t) +  0, 0, 0, t + x0

c − v

+ x0

c + v=  x0, 0, 0, t + x0

c − v.

Hence, if x0 be chosen infinitesimally small,

1

2  1

c − v

+

1

c + v@

@t

= @

@x0

+

1

c − v

@

@t

,

or

@

@x0

+ v

c2 − v2

@

@t

= 0.

It is to be noted that instead of the origin of the co-ordinates we might have

chosen any other point for the point of origin of the ray, and the equation just

obtained is therefore valid for all values of x0, y, z.

An analogous consideration—applied to the axes of Y and Z—it being borne

in mind that light is always propagated along these axes, when viewed from the

stationary system, with the velocity pc2 − v2 gives us

@

@y

= 0,

@

@z

= 0.

Since  is a linear function, it follows from these equations that

 = at −

v

c2 − v2 x0

where a is a function (v) at present unknown, and where for brevity it is

assumed that at the origin of k,  = 0, when t = 0.

With the help of this result we easily determine the quantities , ,  by

expressing in equations that light (as required by the principle of the constancy

of the velocity of light, in combination with the principle of relativity) is also

6

propagated with velocity c when measured in the moving system. For a ray of

light emitted at the time  = 0 in the direction of the increasing 

 = c or  = act −

v

c2 − v2 x0.

But the ray moves relatively to the initial point of k, when measured in the

stationary system, with the velocity c − v, so that

x0

c − v

= t.

If we insert this value of t in the equation for , we obtain

 = a

c2

c2 − v2 x0.

In an analogous manner we find, by considering rays moving along the two other

axes, that

 = c = act −

v

c2 − v2 x0

when

y

pc2 − v2

= t, x0 = 0.

Thus

 = a

c

pc2 − v2

y and  = a

c

pc2 − v2

z.

Substituting for x0 its value, we obtain

 = (v) (t − vx/c2),

 = (v) (x − vt),

 = (v)y,

 = (v)z,

where

=

1

p1 − v2/c2

,

and  is an as yet unknown function of v. If no assumption whatever be made

as to the initial position of the moving system and as to the zero point of  , an

additive constant is to be placed on the right side of each of these equations.

7

We now have to prove that any ray of light, measured in the moving system,

is propagated with the velocity c, if, as we have assumed, this is the case in the

stationary system; for we have not as yet furnished the proof that the principle

of the constancy of the velocity of light is compatible with the principle of

relativity.

At the time t =  = 0, when the origin of the co-ordinates is common to the

two systems, let a spherical wave be emitted therefrom, and be propagated with

the velocity c in system K. If (x, y, z) be a point just attained by this wave,

then

x2 + y2 + z2 = c2t2.

Transforming this equation with the aid of our equations of transformation

we obtain after a simple calculation

2 + 2 + 2 = c2 2.

The wave under consideration is therefore no less a spherical wave with

velocity of propagation c when viewed in the moving system. This shows that

our two fundamental principles are compatible.5

In the equations of transformation which have been developed there enters

an unknown function  of v, which we will now determine.

For this purpose we introduce a third system of co-ordinates K0, which relatively

to the system k is in a state of parallel translatory motion parallel to

the axis of ,† such that the origin of co-ordinates of system K0 moves with

velocity −v on the axis of . At the time t = 0 let all three origins coincide, and

when t = x = y = z = 0 let the time t0 of the system K0 be zero. We call the

co-ordinates, measured in the system K0, x0, y0, z0, and by a twofold application

of our equations of transformation we obtain

t0 = (−v) (−v)( + v/c2) = (v)(−v)t,

x0 = (−v) (−v)( + v ) = (v)(−v)x,

y0 = (−v) = (v)(−v)y,

z0 = (−v) = (v)(−v)z.

Since the relations between x0, y0, z0 and x, y, z do not contain the time t,

the systems K and K0 are at rest with respect to one another, and it is clear that

the transformation from K to K0 must be the identical transformation. Thus

(v)(−v) = 1.

5The equations of the Lorentz transformation may be more simply deduced directly

以上就是k0be是什么意思的全部内容,Kobe 1.荷兰语男子名,Jakob的昵称,词源为希伯来语人名 יַעֲקֹב ,含义为“取代者”。一说词源为希伯来语 יַעֲקֹבְאֵל ,含义为“愿上帝护佑”。

猜你喜欢